
UNLOCK
KEYCHAIN

Collect password 
from user

Make an unencrypted 
data string out of our 
in-memory keychain

Store keychain in 
memory until locked

Read saved data 
from disk

Decrypt

Decrypt

Show password 
hint, allow retry

fail succeed

SAVE
KEYCHAIN

Write save file to 
disk and send to 

server if sync 
enabled

Encrypt

Delete in-memory 
KeyShade data

Done

Delete password from 
memory

Remove all entries from 
KeyShade menu

LOCK
KEYCHAIN

fail succeed

Get password 
from memory, and 

salt from saved 
data file

Combine password 
and salt, and run 

though hash*

Decrypt saved 
data using AES 

with 256-bit hash* 
as the key

* KeyShade uses SHA-2 (default) or Argon2 as its password hashing algorithm. This can be set in preferences. Argon2 is hardened against password crackers by nature, and our SHA-2 

implementation runs >15,000 iterations of SHA-2 to harden it against brute force attacks. Both hash methods are secure, as long as the master password is sufficiently strong.

Try to deserialize 
decrypted data to 

KeyShade 
keychain

Encrypt

Generate 256-bit 
salt from pseudo-

random

Combine password 
and salt, and run 

though hash*

Encrypt serialized 
data using AES 

with 256-bit hash* 
as the key

Create save file 
including encrypt-
ed data, salt and 

password hint

KeyShade
Security Logic Flowchart

©2016 Rayner Software LLC


