UNLOCK
KEYCHAIN

Collect password
from user

Read saved data
from disk

fail succeed

Show password
hint, allow retry

Store keychain in
memory until locked

)

Decrypt

Get password
from memory, and
salt from saved
data file

Combine password
and salt, and run
though hash*

Decrypt saved
data using AES
with 256-bit hash*
as the key

Try to deserialize
decrypted data to
KeyShade
keychain

\

succeed

J

KeyShade
Security Logic Flowchart

SAVE
KEYCHAIN

-

~

Make an unencrypted
data string out of our
in-memory keychain

Write save file to
disk and send to
server if sync
enabled

Encrypt

Generate 256-bit
salt from pseudo-
random

Combine password
and salt, and run
though hash*

Encrypt serialized
data using AES
with 256-bit hash*
as the key

Create save file
including encrypt-
ed data, salt and

password hint

LOCK
KEYCHAIN

-

Delete in-memory
KeyShade data

L

Delete password from
memory

__/

A\ 4

Remove all entries from
KeyShade menu

_

Done

* KeyShade uses SHA-2 (default) or Argon2 as its password hashing algorithm. This can be set in preferences. Argon2 is hardened against password crackers by nature, and our SHA-2
implementation runs >15,000 iterations of SHA-2 to harden it against brute force attacks. Both hash methods are secure, as long as the master password is sufficiently strong.

©2016 Rayner Software LLC

